Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana ‘Huanxi’ (Musa itinerans)

نویسندگان

  • Weihua Liu
  • Chunzhen Cheng
  • Gongti Lai
  • Yuling Lin
  • Zhongxiong Lai
چکیده

Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus

Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago,...

متن کامل

Taxonomic notes on wild bananas (Musa) from China

Musa paracoccinea is published as a new species. Two imperfectly known species, M. nagensium and M. sanguinea are accepted. Musa lushanensis, M. luteola and M. dechangensis are reduced as synonyms of M. basjoo. It is pointed out here that M. wilsonii and M. rubra used in the Chinese literature such as Fl. Reipubl. Popularis Sin. and Fl. Yunnan. are in fact misidentifications of M. itinerans and...

متن کامل

MOLECULAR CLONING AND EVALUATION OF WILD PROMOTER IN EXPRESSION OF BACILLUS SPHAERICUS PHENYLALANINE DEHYDROGENASE GENE IN BACILLUS SUBTILIS CELLS

To evaluate the role of wild promoter of L-phenylalanine dehydrogenase (PheDH) gene, referred to as pdh, from Bacillus sphaericus in expression, cloning of pdh gene in Bacillus subtilis was performed. The whole pdh gene was cloned in pHY300PLK shuttle vector and amplified, construct (pHYDH) then transformed in B. subtilis ISW1214 and E. coli JM109. The pdh endogenous promoter presented no effec...

متن کامل

Analysis of Induced Mutants of Salinity Resistant Banana (Musa acuminata cv. Dwarf Cavendish) Using Morphological and Molecular Markers

Genetic diversity amongst 21 induced mutant clones tolerant to salinity along with one non-irradiated sensitive clone of banana (Musa acuminata cv. Dwarf Cavendish (AAA)) were studied using morphological and random amplified polymorphic DNA (RAPD) markers. Out of the 30 phenotypic indices screened, 23 were polymorph and two traits, leaf habit and blotches color, were differentiated by non-irrad...

متن کامل

Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.

The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015